A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models
نویسندگان
چکیده
The paper is concerned with development of a new finite-volume method for a class of chemotaxis models and for a closely related haptotaxis model. In its simplest form, the chemotaxis model is described by a system of nonlinear PDEs: a convection-diffusion equation for the cell density coupled with a reaction-diffusion equation for the chemoattractant concentration. The first step in the derivation of the new method is made by adding an equation for the chemoattractant concentration gradient to the original system. We then show that the convective part of the resulting system is typically of a mixed hyperbolic-elliptic type and therefore straightforward numerical methods for the studied system may be unstable. The proposed method is based on the application of the second-order central-upwind scheme, originally developed for hyperbolic systems of conservation laws in Kurganov et al. (SIAM J Sci Comput 21:707–740, 2001), to the extended system of PDEs. We show that the proposed second-order scheme is positivity preserving, which is a very important stability property of themethod. The scheme is applied to a number of two-dimensional problems including the most commonly used Keller–Segel chemotaxis model and its modern extensions as well as to a haptotaxis system modeling tumor invasion into surrounding healthy tissue. Our numerical results demonstrate high accuracy, stability, and robustness of the proposed scheme. Mathematics Subject Classification (2000) 76M12 · 92C17 · 35M10 A. Chertock (B) Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA e-mail: [email protected] A. Kurganov Mathematics Department, Tulane University, New Orleans, LA 70118, USA e-mail: [email protected]
منابع مشابه
A Second-order Well-balanced Positivity Preserving Central-upwind Scheme for the Saint-venant System
A family of Godunov-type central-upwind schemes for the Saint-Venant system of shallow water equations has been first introduced in [A. Kurganov and D. Levy, M2AN Math. Model. Numer. Anal., 36, 397-425, 2002]. Depending on the reconstruction step, the second-order versions of the schemes there could be made either well-balanced or positivity preserving, but fail to satisfy both properties simul...
متن کاملWell-Balanced Positivity Preserving Central-Upwind Scheme on Triangular Grids for the Saint-Venant System
We introduce a new second-order central-upwind scheme for the Saint-Venant system of shallow water equations on triangular grids. We prove that the scheme both preserves stationary steady states (lake at rest) and guarantees the positivity of the computed fluid depth. Moreover, it can be applied to models with discontinuous bottom topography and irregular channel widths. We demonstrate these fe...
متن کاملCentral-Upwind Schemes for Two-Layer Shallow Water Equations
We derive a second-order semi-discrete central-upwind scheme for oneand two-dimensional systems of two-layer shallow water equations. We prove that the presented scheme is wellbalanced in the sense that stationary steady-state solutions are exactly preserved by the scheme, and positivity preserving, that is, the depth of each fluid layer is guaranteed to be nonnegative. We also propose a new te...
متن کاملCentral-Upwind Scheme for Shallow Water Equations with Discontinuous Bottom Topography
Finite-volume central-upwind schemes for shallow water equations were proposed in [A. Kurganov and G. Petrova, Commun. Math. Sci., 5 (2007), 133–160]. These schemes are capable of maintaining “lake-at-rest” steady states and preserving the positivity of the computed water depth. The well-balanced and positivity preserving features of the central-upwind schemes are achieved, in particular, by us...
متن کاملCentral-Upwind Scheme for a Non-hydrostatic Saint-Venant System
We develop a second-order central-upwind scheme for the non-hydrostatic version of the Saint-Venant system recently proposed in [M.-O. Bristeau and J. Sainte-Marie, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), pp. 733–759]. The designed scheme is both well-balanced (capable of exactly preserving the “lake-at-rest” steady state) and positivity preserving. We then use the central-upwind scheme ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Numerische Mathematik
دوره 111 شماره
صفحات -
تاریخ انتشار 2008